Four-Wire Bridge Measurements of Silicon van der Pauw Stress Sensors

Under the proper orientations and excitations, the transverse output of rotationally symmetric four-contact van der Pauw (VDP) stress sensors depends upon only the in-plane shear stress or the difference of the in-plane normal stresses on (100) silicon. In bridge-mode, each sensor requires only one four-wire measurement and produces an output voltage with a sensitivity that is 3.16 times that of the equivalent resistor rosettes or bridges, just as in the normal VDP sensor mode that requires two separate measurements. Both numerical and experimental results are presented to validate the conjectured behavior of the sensor. Similar results apply to sensors on (111) silicon. The output voltage results provide a simple mathematical expression for the offset voltage in Hall effect devices or the response of pseudo Hall-effect sensors. Bridge operation facilitates use of the VDP structure in embedded stress sensors in integrated circuits. [DOI: 10.1115/1.4028333]

Keywords: stress sensor, piezoresistance, van der Pauw, pseudo Hall effect, Wheatstone bridge, (100) silicon, (111) silicon

1 Introduction

Stress effects in four-terminal resistor sensor elements caused by piezoresistivity have been of interest to a number of research communities. For example, various piezoresistive structures have been used as sensor elements in pressure sensors [1–6] including the use of the transverse output voltage from four-terminal devices [3–7]. In pressure sensors, the outputs are most often calibrated versus pressure without specific interest in the resolving various stress components in the diaphragm. In contrast, the detailed piezoresistive response of Hall devices, termed the pseudo-Hall effect, has been widely analyzed since it can represent a significant offset error in Hall-effect measurements [8–11].

The electronic packaging community has long been interested in detailed measurement of the various components of the stress state [12–21] in order to understand how to mitigate the impact of stress on precision analog and mixed-signal integrated circuits. Invariance of the stress sensor output is to be identical under 90 deg rotations in order to simplify the cal-

In previous work [32,33], it was demonstrated that standard four-contact VDP structures [34,35] in Fig. 1 could provide partially temperature compensated measurements of in-plane stress components including shear stress σ_{12} and in-plane normal stress difference ($\sigma_{11} - \sigma_{22}$) on the (100) silicon surface with greater than 3.16 improvement in sensitivity over corresponding resistor rosettes and bridges. However, stress extraction required two separate measurements of each structure, making the measurements inconvenient and not particularly good for IC implementations.

Other research teams have developed sophisticated ac current spinning techniques and have demonstrated stress extraction from multiterminal sensor structures [9,11,36]. The Hall-effect literature generally presents the stress dependence of the “bridge-mode” outputs but does provide a simple closed-form expression for the magnitude of the sensor output voltage nor discusses the enhanced sensitivity of the symmetrical structure [4,5,7].

There are also important differences between typical Hall devices and the VDP structures that are commonly utilized to measure sheet resistance. The VDP structures are most often designed to be identical under 90 deg rotations in order to simplify the calculations, although the original theory [34,35] only assumes four arbitrarily positioned point-contacts on the periphery. In the Hall effect literature, devices often appear as high aspect ratio rectangular devices with broad contacts on the sides [5,7,37–39], although they can certainly also be square, and there has been much work on the impact of finite widths such as [37–42]. Subsequent analysis presented here based upon superposition requires the use of rotational symmetry.

In this paper, we present numerical and experimental results for four-wire bridge-mode operation of square VDP sensors shown in Fig. 1, and the output voltage is related directly to the results of van der Pauw [34,35]. Current is applied to the devices across one diagonal, and the transverse output voltage is measured across the other diagonal, thereby producing a single four-wire measurement that is directly proportional to either the in-plane shear stress or normal stress difference. The stress dependence of the output depends upon the orientation of the diagonal with respect to the crystallographic axes of silicon [7,11,36]. Bridge-mode operation with dc clearly simplifies the measurements and facilitates use devices as embedded sensors in more complex integrated circuits. Here, we propose that the transverse output voltage is directly
related to the van der Pauw voltage of the isotropic (unstressed) device, and conjecture that the stress dependence of the transverse output voltage is equivalent to the two-step measurement technique in references [32,33] for sensors on both (100) and (111) silicon wafers. The (100) and (111) surface orientations are considered here since they are historically the most common types used in semiconductor manufacturing.

Sections 2 and 3 review modeling of anisotropic electrical conduction in the sensors, and explore electrical symmetries inherent in the structure. In Sec. 4, superposition analysis is used to establish the expected dependencies of the transverse output voltages on stress and the VDP results. Finite element modeling is discussed in Sec. 5, and a commercial finite-element package is used to simulate the anisotropic conductor. Numerical results in Sec. 6 verify the intuitive results and assumptions made in Sec. 4, and experimental data in Sec. 7 are consistent with our conjectured characterization of the device.

2 Electrical Conduction and Orientation

For two-dimensional electrical conduction problems (i.e., a thin square structure of thickness t) in Cartesian coordinates, voltage \(\Phi \) must satisfy

\[
\kappa'_i \frac{\partial^2 \Phi}{\partial x_i^2} + 2\kappa'_{ij} \frac{\partial^2 \Phi}{\partial x_i \partial x_j} + \kappa'_{ii} \frac{\partial^2 \Phi}{\partial x_i^2} = I
\]

in which the \(\kappa'_{ij} \) represent electrical conductivities in the selected primed coordinate systems in Fig. 2 for (100) and Fig. 3 for (111) silicon wafers, and current I is zero except at the boundary points where current is injected and removed as in Fig. 1. The in-plane axes of the unprimed \((x_1 - x_2)\) coordinate system are aligned with the silicon crystallographic axes, whereas the axes of the primed coordinate system \((x'_1 - x'_2)\) are aligned with the edges of typical IC chips fabricated on the wafer surface. The \(x'_2\) axis is perpendicular to the silicon wafer. Note that the primed wafer coordinate system in Fig. 2 is rotated from the crystallographic coordinates by 45 deg for (100) silicon material. Similar notation is used for (111) silicon, Fig. 3, but the crystallographic axes are not in the plane of the wafer.

2.1 Resistivity and Conductivity Components. The stress dependence of silicon has traditionally been cast in terms of variation in the resistivity through the three fundamental piezoresistive coefficients: \(\pi_{11}, \pi_{12},\) and \(\pi_{44}\). The in-plane resistivity components have different dependencies on these three coefficients for various semiconductor wafer planes and choice of reference axes. The electrical conductivity components required in Eq. (1) are found from the inverse of the resistivity component matrix

\[
\begin{bmatrix}
\kappa'_{11} & \kappa'_{12} \\
\kappa'_{12} & \kappa'_{22}
\end{bmatrix}^{-1} = \begin{bmatrix}
\rho'_{11} & \rho'_{12} \\
\rho'_{12} & \rho'_{22}
\end{bmatrix} = \frac{1}{\rho'_{11} \rho'_{22} - \rho'_{12}^2} \begin{bmatrix}
\rho'_{22} & -\rho'_{12} \\
-\rho'_{12} & \rho'_{11}
\end{bmatrix}
\]

(2)

2.2 (100) Silicon. The in-plane resistivity components for (100) silicon have been calculated from theory \([11,14,30,43]\), and the general expressions in an arbitrary (double-primed) coordinate system are

\[
\rho''_{11} = \rho_0 \left[1 + \frac{1}{2} \left(\sigma''_{11} + \sigma''_{12} \right) + \frac{\pi_{44}}{2} \left(\sigma''_{11} - \sigma''_{12} \right) \sin 2\phi \right] + \pi_0 \sigma''_{12} \sin 2\phi + \pi_1 \sigma''_{33} + \pi_2 \Delta T
\]

\[
\rho''_{12} = \rho_0 \left[1 + \frac{1}{2} \left(\sigma''_{11} + \sigma''_{12} \right) - \frac{\pi_{44}}{2} \left(\sigma''_{11} - \sigma''_{12} \right) \sin 2\phi \right] - \pi_0 \sigma''_{12} \sin 2\phi + \pi_1 \sigma''_{33} + \pi_2 \Delta T
\]

\[\rho''_{12} = \rho_0 \left[\pi_0 \sigma''_{12} \sin 2\phi - \frac{\pi_{44}}{2} \left(\sigma''_{11} - \sigma''_{12} \right) \sin 2\phi \right] \quad \pi_0 \equiv \pi_{11} - \pi_{12} \quad \pi_5 \equiv \pi_{11} + \pi_{12}
\]

where the stresses are resolved in the primed coordinate system in Fig. 2, \(\phi\) is the angle of rotation of the double-primed coordinate system away from the \(x'_1 - x'_2\) axes, and \(\Delta T = T - T_{REF}\) is the temperature change from reference temperature \(T_{REF}\). For this work, the most important terms are the shear resistivities for the two cases in Fig. 1. For the crystallographic system (\(\phi = -45\) deg)
Table 1 Piezoresistive coefficients in lightly doped silicon [44,45]

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>n-type Si ($\times 10^{-12}$ Pa$^{-1}$)</th>
<th>p-type Si ($\times 10^{-12}$ Pa$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>π_{11}</td>
<td>-1020</td>
<td>$+66$</td>
</tr>
<tr>
<td>π_{12}</td>
<td>$+534$</td>
<td>-11</td>
</tr>
<tr>
<td>π_{44}</td>
<td>-136</td>
<td>$+1380$</td>
</tr>
<tr>
<td>$\pi_{24} = \pi_{11} + \pi_{12}$</td>
<td>-488</td>
<td>$+55$</td>
</tr>
<tr>
<td>$\pi_{0} = \pi_{11} - \pi_{12}$</td>
<td>-1560</td>
<td>$+77$</td>
</tr>
<tr>
<td>B_1</td>
<td>-311</td>
<td>$+718$</td>
</tr>
<tr>
<td>B_2</td>
<td>$+298$</td>
<td>-228</td>
</tr>
<tr>
<td>B_3</td>
<td>$+61$</td>
<td>-442</td>
</tr>
<tr>
<td>B_1-B_2</td>
<td>-609</td>
<td>$+946$</td>
</tr>
<tr>
<td>$B_1+B_2-B_3$</td>
<td>$\frac{\pi_{11} + \pi_{12} + \pi_{44}}{2}$</td>
<td>$\frac{\pi_{11} + 2 \pi_{12} - \pi_{44}}{3}$</td>
</tr>
</tbody>
</table>

Largest values are indicated in bold type.

whereas the value for $\phi = 0$ deg gives the result in the primed wafer coordinate system

$$\rho'_{12} = \rho_0 \left[\pi_{44} (\sigma'_{11} - \sigma'_{22}) \right]$$ \hspace{1cm} (4)

Note that the coordinate systems of interest are associated with the directions of the diagonals of the square sensors.

Values of the piezoresistive coefficients in lightly doped material appear in Table 1 along with two useful combined coefficients, π_0 and π_3 [43–45]. Note that π_{44} for p-type material and π_0 for n-type are the largest of the coefficients, and these differences lead to preferred doping for optimizing the sensitivity of the sensors for a pair of VDP sensors following the suggestions discussed in Refs. [43,46,47] in which the 45 deg sensor would be n-type silicon, and the 0 deg sensor would be p-type.

2.3 (111) Silicon. The in-plane resistivity components for (111) silicon have also been calculated from theory [14,43] and shear resistivities for $\phi = 0$ and 45 deg are

$$\rho'_{12} = \rho_0 \left[(B_1 - B_2) \sigma'_{12} + 2 \sqrt{2} (B_2 - B_1) \sigma'_{13} \right]$$ \hspace{1cm} (6)

and

$$\rho''_{12} = \rho_0 \left[\frac{(B_1 - B_2)}{2} (\sigma''_{11} - \sigma''_{22}) + 2 \sqrt{2} (B_2 - B_3) \sigma''_{23} \right]$$ \hspace{1cm} (7)

respectively, where the B coefficients are defined in Table 1.

The discussions that follow in the rest of the paper are identical for (100) and (111) silicon except for the numbers and stress terms involved due to the differences in the various coefficients in Eqs. (3)–(7). Note that the (111) sensors contain additional terms related to σ_{13} and σ_{23}, although the values of these stress components are zero if the IC die surface is traction free.

3 Electrical Symmetries

A number of electrical symmetries exist when the sensors are carefully aligned to the x_1-x_2 or $x'_1-x'_2$ coordinate systems defined in Fig. 2, and result in the preferred orientations for the sensors in Fig. 1. These are discussed briefly below. More detailed discussion of the symmetries in terms of standard resistor mesh representations of finite difference equations can be found in Ref. [48].

3.1 Vertical Symmetry. Figure 4 includes a vertical line of symmetry down through the middle of the device relative to the horizontal and vertical resistivity components. Suppose a current I enters the top of the sensor and exits through the bottom. If ρ_{12}' is zero, then the current streamlines will exhibit even symmetry about line AB and DC and be perpendicular to centerline BD. Thus, the voltage V_{BD} across the center of the structure between points B and D will be zero3 for any values of ρ_{12}'. However, presence of nonzero shear stress ($\rho_{12}' \neq 0$) breaks the symmetry of the structure, and the voltage between B and D depends directly on the shear resistivity in the primed system (Eq. (5))

$$V_{BD} \propto \rho_{12}' \pi_{12}'$$ \hspace{1cm} (8)

The same symmetry applies to the square shape or any rotationally symmetric structure, such as an octagon, and all can potentially be used as shear stress sensors [30,36]. Note that the use of a square structure in Fig. 4(b) can be important in state-of-the-art fabrication processes that do not permit creation of ±45 deg geometrical features.

3.2 Diagonal Symmetry. A similar symmetry argument applies to the sensor in Fig. 5 in which current I enters one corner and exits from the diagonally opposite corner. Symmetry now exists relative to the diagonal between corners, and the voltage between points B and D will now depend upon the value of the shear resistivity in the crystallographic coordinate system (Eq. (4)). In this case, output V_{BD} will be proportional to $\pi_{44}(\sigma_{11}' - \sigma_{22}')$, and the same symmetry exists for either diagonal

$$V_{BD} \propto \rho_{44}' \pi_{44}(\sigma_{11}' - \sigma_{22}')$$ \hspace{1cm} (9)

3Or between any two symmetrically located points on opposite sides of the device.
Based upon Figs. 4(b) and 5, we expect that a single multiterminal square could actually be used to measure temperature compensated values of both shear stress σ_{12} and the normal stress difference $(\sigma_{11} - \sigma_{22})$\cite{31,32,33,11,30,36}. However, one can observe from Table 1 that one of the two sensitivities will be much smaller than that of the other. This is not a limitation in the (111) material where $(B_1 - B_2)$ represents the important coefficient for both vertical and diagonal current injection.

Note that the functional dependencies in Eqs. (8) and (9) can also be found by integrating the electric field along paths BC and DC in Figs. 4 and 5. These paths effectively produce bridge outputs involving the resistivities oriented parallel to the edges of the squares.

4 Analysis by Superposition

Electrical behavior of the VDP device is now explored using superposition as depicted in Fig. 6, in which the diagonal current excitation from Fig. 5 is broken into two equal current sources driving the structure along two of the sides of the square. The results of Mian et al.\cite{32,33} apply directly to the two diagrams in Figs. 6(b) and 6(c).

Using superposition depicted in Fig. 6, we have

\[V_O = V_{O1} + V_{O2} \]
\[V_{O1} = V_{VDP1} + V_1 \text{ and } V_{O2} = -(V_{VDP2} + V_2) \]

Combining these expressions yields

\[V_O = (V_{VDP1} - V_{VDP2}) + (V_1 - V_2) \] \hspace{1cm} (11)

Based upon symmetry for the unstressed isotropic case, $V_{VDP1} = V_{VDP2} = V_{VDP}$ and $V_1 = V_2$, where V_{VDP} is the VDP voltage given by VDP’s formula for rotationally symmetric structures\cite{34,35}:

\[V_{VDP} = IR_S \ln(2) \] \hspace{1cm} (12)

where $R_S = (\rho, j\rho)$ is the sheet resistance of the sensor. Therefore, output voltage V_O is zero in the isotropic (unstressed) case. A similar analysis applies to the 45 deg sensor.

When stress is present, Refs.\cite{32} and\cite{33} have shown theoretically that the combination of the two separate sets of measurements in Figs. 6(b) and 6(c) result in Eqs. (13) and (14) for the 0 deg and 45 deg VDP devices on (100) silicon.

\[V_{VDP1} - V_{VDP2} = V_{VDP}\left[3.16\pi_{44}(\sigma_{11} - \sigma_{22})\right] \] \hspace{1cm} (13)
\[V_{VDP1} - V_{VDP2} = V_{VDP}\left[3.16(2\pi_{44})\sigma_{12}\right] \] \hspace{1cm} (14)

These output voltage differences provide a 3.16 x improvement in sensitivity over the corresponding resistor rosettes and bridges. Thus the transverse output voltages in Eq. (11) across the diagonals of the two structures become

\[V_{O/0\text{deg}} = V_{VDP}\left[3.16\pi_{44}(\sigma_{11} - \sigma_{22})\right] + (V_1^0 - V_2^0) \] \hspace{1cm} (15)
\[V_{O/45\text{deg}} = V_{VDP}\left[3.16(2\pi_{44})\sigma_{12}\right] + (V_1^{45} - V_2^{45}) \]

For the unstressed case, the second terms involving V_1 and V_2 in each equation are zero (since $V_1 = V_2$ by symmetry as mentioned above). In the next two sections, finite element simulations are used to demonstrate that V_1 and V_2 still cancel out even in stressed sensors, and experimental verification for stressed sensors is given in Sec. 7. However, we have not been able to argue theoretically that V_1 and V_2 are equal in the general stressed condition. Thus, we can only conjecture based upon numerical simulations and sample data that diagonal mode operation yields the desired enhanced sensitivity outputs, but with the advantage that only one four-wire bridge type measurement is required for each stress term. With $V_1 - V_2 = 0$, Eq. (15) becomes

\[V_{O/0\text{deg}} = V_{VDP}\left[3.16\pi_{44}(\sigma_{11} - \sigma_{22})\right] \] \hspace{1cm} (16)
\[V_{O/45\text{deg}} = V_{VDP}\left[3.16(2\pi_{44})\sigma_{12}\right] \]

Similar analyses for VDP devices on (111) silicon yield

\[V_{O/0\text{deg}} = V_{VDP}\left[(3.16)\left[B_1 - B_2\right](\sigma_{11} - \sigma_{22}) + 4\sqrt{2}(B_2 - B_3)\sigma_{23}\right] \]
\[V_{O/45\text{deg}} = V_{VDP}\left[2\left[B_1 - B_2\right]\sigma_{12} + 4\sqrt{2}(B_2 - B_3)\sigma_{13}\right] \] \hspace{1cm} (17)

which also contain terms from two additional out-of-plane shear stress components. These additional terms are zero if the surface of the die is traction free.

4.1 Temperature Compensation. The temperature coefficient of resistance is isotropic, and resistivities ρ_{11} and ρ_{22} are affected by temperature in exactly the same way. Hence, a voltage difference taken between any two symmetrically located points on the sensor will be independent of temperature dependent changes (temperature compensated) in the isotropic resistivity. However, it is important to note that this does not apply to the temperature coefficient of the piezoresistive coefficients themselves, which must appear in the output expressions.

5 Finite Element Modeling

The commercial simulation programTMABAQUS TMTM is capable of simulating multidimensional anisotropic heat conduction problems using finite element techniques and is used in this work for simulation of the VDP sensors. For two-dimensional heat conduction problems, temperature T must satisfy

\[k_{11} \frac{\partial^2 T}{\partial x_1^2} + 2k_{12} \frac{\partial^2 T}{\partial x_1 \partial x_2} + k_{22} \frac{\partial^2 T}{\partial x_2^2} = Q \] \hspace{1cm} (18)

where the k_{ij} represent thermal conductivities. Equation (18) is the same as Eq. (1), and the well-known analogies between electrical conduction and heat conduction are listed in Table 2. Thus, in this...
work, the two-dimensional heat conductivity problem has been solved numerically, and the nodal temperature has been extracted as output. This temperature value is equivalent to the voltage in the analogous two-dimensional electrical conduction problem. Simulation results have been used to better understand and verify the intuitive behavior of the square VDP sensors and to confirm the postulated sensitivities of the sensors to various stresses.

5.1 Model Development. Our initial two-dimensional model for the VDP sensor is shown in Fig. 7 and consists of 100 four-node shell conduction elements. The simulation program has steady-state as well as transient heat conduction capabilities and has a single degree of freedom, temperature. The dimensions of the modeled VDP structure are 1000 \(\times \) 1000 \(\mu \)m, and the shell elements have a thickness of 100 \(\mu \)m. The total heat flow is assumed to be 100 \(\mu \)W (analogous to an 100 \(\mu \)A current). The total heat is applied at the corner node points A (heat flow in) and B (heat flow out). Heat flux (analogous to current density) normal to the boundary elsewhere is assumed zero.

The voltage difference between corners D and C is related to the sheet resistance \(R_{\text{VDP}} \) (\(\rho_\text{dc} / \rho_\text{AB} \)) of the square by VDP’s formula in Eq. (12).

5.2 Solution Procedure. The finite element model has been generated in ABAQUS for an orthotropic conductor with conductivity components \(k_{11}, k_{22}, \) and \(k_{12}. \) For the isotropic case, the resistivity components are \(\rho_{11} = \rho_{22} = \rho_0, \) which is assumed to be 1 \(\Omega \cdot \)cm and \(\rho_{12} = 0. \) Figure 8 shows the potential contours in VDP mode as pictured in Fig. 7. For a sheet resistance of 100 \(\Omega/sq, \) the theoretical value of the measured VDP resistance should be 22.06 \(\Omega, \) and simulation yields a value of 22.05 \(\Omega. \)

To check the dependency of the solution on the finite element mesh, sensitivity tests have been done for this structure. It has been found that if the number of elements is greater than 2500 elements (50 \(\times \) 50 array) then the results are independent of the mesh density, so the solutions have converged. All results in this paper were calculated with the 50 \(\times \) 50 mesh.

<table>
<thead>
<tr>
<th>Conductivity (k) (\text{W/m-K})</th>
<th>Conductivity (k') (1/\Omega-m)</th>
<th>Heat flux (q) (\text{W/m}^2)</th>
<th>Current density (J) (\text{A/m}^2)</th>
<th>Temperature (T) (\text{K})</th>
<th>Voltage (V) (\text{V})</th>
<th>Heat flow (Q) (\text{W})</th>
<th>Current (I) (\text{A})</th>
</tr>
</thead>
</table>
| Tab. 2 Analogy between heat conduction and electrical conduction

<table>
<thead>
<tr>
<th>Conductivity (k_{ij}) (\text{W/m-K})</th>
<th>Conductivity (k'_{ij}) (1/\Omega-m)</th>
<th>Heat flux (q_{ij}) (\text{W/m}^2)</th>
<th>Current density (J_{ij}) (\text{A/m}^2)</th>
<th>Temperature (T) (\text{K})</th>
<th>Voltage (V) (\text{V})</th>
<th>Heat flow (Q) (\text{W})</th>
<th>Current (I) (\text{A})</th>
</tr>
</thead>
</table>

Fig. 7 Initial FEA mesh and current excitation \(I = 100 \mu A \) for VDP mode: \(R_{\text{VDP}} = \rho_\text{dc} / \rho_\text{AB} \)

Fig. 8 Contours of potential distribution for VDP sensor

For calculating the stress sensitivites, steady-state conditions have been assumed. It will be demonstrated later that both stress sensor outputs are independent of the variation in \(\rho_{11} \) and \(\rho_{22} \) caused by the temperature dependence of the isotropic resistivity. For different values of the normal stresses \(\sigma_{11}, \sigma_{22}, \) and \(\sigma_{12}, \) the resistivity components are calculated using Eq. (3) and the resistivity matrices are inverted to get the conductivities for the finite element simulations.

Fig. 9 (a) Simulations of the two VDP voltages for 0 deg and 90 deg orientations using the piezoresistive coefficient values in Table 1 for (100) silicon. (b) Simulations of the transverse voltages across the diagonal versus stresses \(\sigma_{11} \) and \(\sigma_{22}. \)
6 Simulation Results

This section presents simulation results for a variety of sensor orientations, stress conditions, and temperatures to verify the intuition and analysis presented in Secs. 2–5.

6.1 In-Plane Normal Stress Sensor. Figures 9–14 and Tables 3 and 4 provide simulation results for the two orientations of stress sensors. Figure 9(a) shows the VDP output voltages along vertical and horizontal edges versus stress for the 0 deg and 90 deg orientations of the sensor showing that both start at the unstressed value V_{VDP} and spread apart under stress. The individual slopes and intercept agree with the theory presented in Refs. [32] and [33]. The transverse voltage across diagonal BD as plotted in Fig. 9(b) agrees closely with the theory in Eq. (15) with V_1 and V_2 in Table 1 with $I = 100$ μA. The slopes of the responses are equal and opposite as expected for σ_{11} and σ_{22}.

The simulation results in Tables 3 and 4 give the stress dependent voltages across all four sides of the VDP device when current is injected between adjacent corners. The input voltage and the VDP voltage vary with stress, whereas the other two voltages, identified in as V_1 and V_2 in Sec. 3, are equal and do not vary significantly under stress demonstrating the validity of Eq. (15) with $V_1 - V_2 = 0$. These results have all been rounded to five significant digits. The maximum deviation from theory is less than 1%. Note that the slopes of the two voltage variations in Fig. 9(a) differ slightly since they are proportional to $(\pi_{44} + \pi_5)$ and $(\pi_{44} - \pi_5)$ (see Eq. (3)).
Thus, the transverse output voltage of the sensor equals that predicted by Eq. (16) with \(V_{\text{VDP}} \) defined in Eq. (12). Bridge-mode operation provides the same 3.16 improvement factor over the corresponding resistor sensors as the original VDP stress sensor theory with two sequential measurements of Mian et al. \[32,33\]. Figure 10 provides numerical verification that the transverse output voltage is in fact independent of shear stress.

6.2 Shear Stress Sensor
Figure 11 presents the output for the shear stress sensors versus normal stress \(r_{0} \), showing that the output is zero and independent of the in-plane normal stress as predicted. Figure 12 gives the output voltage of the same sensor versus in-plane shear stress \(\sigma_{11}^r \), showing a linear output voltage variation with stress. For 100 MPa shear stress with \(\pi_D = 77/\text{TPa} \), Eq. (16) predicts an output of 0.107 mV, which agrees with the simulation. Note that an n-type sensor would have a much larger output because of the much larger value of \(\pi_D \). In this case, the simulation results confirm that the transverse output voltage is given by Eq. (16).

The output voltage is proportional to VDP voltage \(V_{\text{VDP}} \) for the unstressed sensor and the stress induced change. Bridge mode operation again provides the same 3.16 improvement factor over the corresponding resistor sensors as for the original VDP stress sensor theory.

6.3 Temperature Compensation
Figure 12 also depicts the output of the in-plane stress sensor versus stress with large temperature variations included at three points. The points all still remain on a single straight line confirming the temperature compensation of the relations in Eq. (16). Similarly, Fig. 13 depicts the output of the normal stress difference sensor versus stress with.

<table>
<thead>
<tr>
<th>Stress (MPa)</th>
<th>(V_{AB}) (mV)</th>
<th>(V_{AD}) (mV)</th>
<th>(V_{CB}) (mV)</th>
<th>(V_{DC}) (mV)</th>
<th>Theory (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>71.737</td>
<td>34.767</td>
<td>34.767</td>
<td>2.205</td>
<td>2.206</td>
</tr>
<tr>
<td>20</td>
<td>71.837</td>
<td>34.764</td>
<td>34.764</td>
<td>2.309</td>
<td>2.306</td>
</tr>
<tr>
<td>40</td>
<td>71.937</td>
<td>34.762</td>
<td>34.762</td>
<td>2.412</td>
<td>2.407</td>
</tr>
<tr>
<td>60</td>
<td>72.038</td>
<td>34.761</td>
<td>34.761</td>
<td>2.516</td>
<td>2.507</td>
</tr>
<tr>
<td>80</td>
<td>72.138</td>
<td>34.759</td>
<td>34.759</td>
<td>2.620</td>
<td>2.607</td>
</tr>
<tr>
<td>100</td>
<td>72.237</td>
<td>34.757</td>
<td>34.757</td>
<td>2.723</td>
<td>2.707</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stress (MPa)</th>
<th>(V_{AB}) (mV)</th>
<th>(V_{AD}) (mV)</th>
<th>(V_{CB}) (mV)</th>
<th>(V_{DC}) (mV)</th>
<th>Theory (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>71.738</td>
<td>34.766</td>
<td>34.766</td>
<td>2.206</td>
<td>2.206</td>
</tr>
<tr>
<td>20</td>
<td>71.644</td>
<td>34.764</td>
<td>34.764</td>
<td>2.116</td>
<td>2.114</td>
</tr>
<tr>
<td>40</td>
<td>71.552</td>
<td>34.763</td>
<td>34.762</td>
<td>2.026</td>
<td>2.021</td>
</tr>
<tr>
<td>60</td>
<td>71.462</td>
<td>34.761</td>
<td>34.761</td>
<td>1.940</td>
<td>1.929</td>
</tr>
<tr>
<td>80</td>
<td>71.368</td>
<td>34.759</td>
<td>34.759</td>
<td>1.850</td>
<td>1.837</td>
</tr>
<tr>
<td>100</td>
<td>71.275</td>
<td>34.757</td>
<td>34.757</td>
<td>1.761</td>
<td>1.744</td>
</tr>
</tbody>
</table>

Fig. 15 Microphotograph of a VDP test cell containing 0 deg and 45 deg square n-type and p-type sensors on an n-type substrate. Pads are 100 \(\mu \text{m} \) x 100 \(\mu \text{m} \).

Fig. 16 Measured output of a 0 deg n-type sensor on (111) silicon in bridge mode versus uni-axial stress \(r_{11}^r \).
multidegree temperature variations included in the sensor resistivities at three points. Again these intermediate points remain on the linear response supporting the temperature compensation claimed in Eq. (16). It is important to note that temperature dependencies in π_{44} and π_{D} are not included in the simulations.

6.4 Rotational Alignment Errors. The symmetry results presented earlier for the sensors rely on precise alignment of the sensor edges with respect to the $x'_1-x'_2$ axes. However, there is a manufacturing tolerance on the wafer flat position relative to the x_0-x_2 axes. There will also be small mask misalignments during the fabrication processes. The error introduced from σ'_{12} coupling into the $(\sigma'_{11} - \sigma'_{22})$ output of the normal stress difference sensor can be found from the general resistivity expressions in Eq. (3)

$$V_{ERR} = 3.16 V_{VDP} (2\pi_D \sigma'_{12}) \sin(2\theta)$$ (19)

where θ represents the angle of rotation of the square away from the $x'_1-x'_2$ coordinate system. Similarly, the error introduced from $(\sigma'_{11} - \sigma'_{22})$ coupling into the shear stress sensor output can be found as

$$V_{ERR} = 3.16 V_{VDP} \pi_{44} (\sigma'_{11} - \sigma'_{22}) \sin(2\theta)$$ (20)

where θ represents the angle of rotation of the diagonals of the shear stress sensor away from the $x'_1-x'_2$ wafer axes.

Figure 14 presents an example of simulation results for the shear stress sensor output when rotational misalignments ranging from 1 deg to 22.5 deg are added to the orientation of the square shear sensor. A few degrees of error can be tolerated except in regions where stresses are small.

7 Experimental Results

This section presents the results of measurements on various n- and p-type VDP sensors. Figure 15 shows a microphotograph of a VDP test cell containing four VDP test devices that was fabricated on both (100) and (111) silicon. The upper two sensors are p-type silicon and the lower two are n-type. The devices were fabricated on n-type wafers using a basic p-well process, and the sheet resistances were both designed to be approximately 100 Ω/sq.

Equations (16) and (17) contain the relations for the sensor outputs versus stress. The basic behavior of the sensors is the same on (100) and (111) silicon for the condition of uni-axial applied stress, except for the differences between the values of the “π” and “B” coefficients.

Figure 16 presents the output of the 0 deg n-type bridge-mode sensor on (111) silicon as a function of in-plane stress σ'_{11}, and Fig. 17 gives a similar output for a p-type sensor on (111) silicon.
7.1 Comparison of Transverse Voltage and VDP Voltages. Tables 5 and 6 present measured results comparing the difference in the two VDP voltages with the voltages across the diagonal for 0 deg n-type and p-type sensors on (111) silicon. Once the small initial offsets are subtracted, the differences in columns four and five are only a few microvolts. The data yield sheet resistances of 80.6 and 127 Ω/sq for the p- and n-type sensors, respectively. From the V_{90} and V_{0} data, one obtains values of (B_1 - B_2) of 346/TPa and 616/TPa for the n- and p-type sensors, respectively. These results agree well with data from Mian [49]. The values are on the order of 60% of the maximum values expected for lightly doped silicon and are consistent with the data of Cho et al. [50].

8 Summary and Conclusions

Under the proper orientations and excitations, the transverse (diagonal) voltage of symmetrical four-contact VDP sensors depends upon either the in-plane shear stress \(\sigma_{\gamma\gamma} \) or the in-plane normal stress difference \(\sigma_{\gamma\gamma}^{\prime} - \sigma_{\gamma\gamma}^{\prime} \) on both (100) and (111) silicon. Other stress terms are canceled out by the symmetry of the structure, and the measurements are inherently temperature compensated.

In bridge-mode, each sensor requires only one four-wire measurement and produces an output voltage with a sensitivity that is 3.16 times that of the equivalent resistor rosettes or bridges, just as in the normal VDP sensor mode that utilizes two separate measurements. The output voltage is proportional to the voltage derived by VDP for an isotropic device. Experimental and finite-element simulation results are consistent with the conjectured mathematical models for the behaviors of the sensors. We hope to find a formal analytical proof in the future.

The simple expressions presented also characterize the output voltage of pseudo Hall effect sensors or equivalently the offset voltage of Hall effect devices caused by piezoresistive effects.

Square sensors offer an advantage for use in small geometry processes that do not permit fabrication of ±45 deg geometrical features, and the two sensors can easily be merged into a single square eight-contact device.

Acknowledgment

This work was supported by the Alabama Micro/Nano Science and Technology Center and the NSF Center for Advanced Vehicle and Extreme Environment Electronics (CAVE3). We want to thank one of the reviewers for the detailed and thoughtful review of the original manuscript that significantly improved the presentation.

References
